

ACUTE TOXICITY OF ALKYLBENZENE SULFONATE TO HYALLELA AZTECA: EFFECT OF MANIPULATION OF SEDIMENT ORGANIC CARBON

Final Report

Submitted to:

Soap and Detergent Association 475 Park Ave. South New York, NY 10016

Report Number B-463 January 18, 1995 TRAC Laboratories, Inc. 113 Cedar St. P.O. box 215 Denton, TX 76201

٦

1

TRAC LABORATORIES, INC.

TABLE OF CONTENTS

].

1.0 INTRODUCTION 1
2.0 MATERIALS AND METHODS 1 2.1 Organisms 1 2.2 Reference Sediment 1 2.3 Peat Moss 2 2.4 Test Substance (ABS) 2 2.5 Analytical Procedures 2 2.6 Toxicity Test Procedures 2 2.7 Data Analysis 2
3.0 RESULTS AND DISCUSSION 3 3.1 Toxicity Tests and Analytical results 3 3.2 Effect of Organic Carbon Concentration 3 3.3 Effect of ABS Concentrations 3
4.0 REFERENCES 12
APPENDIX A: Toxicity Test Information A1
APPENDIX A: Toxicity Test Data A5
APPENDIX B: Acute Toxicity Test Protocol B1
APPENDIX C: Culture procedure for Hyalella azteca

LIST OF TABLES

].

)

1

3

.

Table 1.	Results of toxicity test in reference sediment	4
Table 2.	Results of toxicity test in reference sediment with 0.3 % organic carbon	4
	Results of toxicity test in reference sediment with 0.6 % organic carbon	
	Results of toxicity test in reference sediment with 1.2 % organic carbon	
Table 5.	Results of toxicity test in reference sediment with 3.0 % organic carbon	6
	Summary of LC50 values	
	Values for routine physical-chemical measurements in overlying water	
Table 8.	Total organic carbon content of IW, OW and S in toxicity tests	8
	Summary of QC results for MBAS analyses	
Table 10	. Summary of QC results for total organic carbon analyses	11

1.0 INTRODUCTION

The objective of this study was to examine the effect of manipulation of sediment organic carbon on the toxicity of alkylbenzene sulfonate (ABS) in reference sediment. ABS used in the study was provided by Monsanto Co. (St. Louis) and was identified as "Branched Detergent Slurry" NBP4138558 (Lot No. CC8439) with an active content of 20.2%.

Toxicity was evaluated in five test systems. The first test system consisted of a test organism (the amphipod *Hyallela azteca*) exposed for 48 h to ABS spiked control substance (reference sediment). The remaining four systems consisted of *H. azteca* exposed for 48 h to reference sediment spiked with ABS at each of four concentrations of organic carbon. Organic carbon in the form of peat moss was added to the reference sediment to produce target total organic carbon concentrations of 0.3, 0.6, 1.2 and 3.0% in sediment. The test system behaviors which were of interest were 1) Toxicity of ABS to *H. azteca* at the various organic carbon levels, and 2) ABS concentrations and organic carbon concentrations in interstitial water (IW), overlying water (OW), and sediment (S).

All biological and analytical testing was done at TRAC Laboratories, Inc., 113 Cedar St., Denton, TX 76201, except where noted below.

2.0 MATERIALS AND METHODS

Documentation of sediment toxicity tests was per Good Laboratory Practices, 40 CFR Part 792, August, 1989. This documentation is provided as part of the raw data (Appendix A). Procedures for exposure preparation and sample collection are to be found in the test protocol provided in Appendix B.

2.1 Organisms

Organisms used in the study were *H. azteca* obtained from in-house cultures. Culture procedures are presented in Appendix C. Organisms used in the test were 15-19 d of age.

2.2 Reference Sediment

Reference sediment was sandy loam top soil (Lot #1) obtained locally. The sediment has been shown to be free of lethal or sub-lethal toxic effects to *H. azteca* (TRAC Report B-450, March 23, 1994). The soil was sifted through a 1 mm mesh screen and air dried. Water content was 3% at the time of testing. Organic carbon content was determined before testing began to be 0.02% by dry weight.

2.3 Peat Moss

Commercial grade peat moss (Signing Hills Michigan Peat, Michigan Peat Co., Houston, TX 77098) was sifted through a 1 mm sieve and air dried. Water content was < 1% at the time of testing. Organic carbon content was 43.5% by dry weight.

2.4 Test Substance (ABS)

ABS slurry was delivered to TRAC on 09/13/89 (TRAC ID T-1343). This slurry was prepared by Monsanto (LOT # CC 8439) and reported to have an ABS content of 20.2%.

2.5 Analytical Procedures

Sample collection for analysis of ABS in IW, OW and S is described in the test protocol (Appendix B). Samples were collected at the beginning of each bioassay (at the beginning of the 48 h exposure but after the 24 h equilibration period; see Appendix B). ABS concentrations in IW and OW were estimated using EPA Method 425.1 (colorimetric MBAS). IW and OW were analyzed for total organic carbon (TOC) according to EPA 415.1. Dissolved organic carbon was estimated in OW by filtering an aliquot of the OW through acid washed 0.45 μ membrane filters and analyzing the filtrate according to EPA 415.1. ABS concentrations in S were estimated by methanol extraction followed by cation exchange cartridge cleanup and colorimetric MBAS analysis (Proctor and Gamble memo from B.L. Moore to C. Pittinger, October 10, 1989 and TRAC Report "Evaluation of MBAS analysis for use in sediment bioassays", January, 1990). Un-spiked S and selected spiked S exposures were analyzed for total organic carbon (EPA Method 9060).

2.6 Toxicity Test Procedures

Toxicity test procedures, including preparation of test exposures, are provided in Appendix B. Target sediment ABS levels were determined from range finding tests conducted previously (TRAC Report B-450, March 23, 1994). The amount of peat moss to be added to the reference sediment to produce the desired sediment organic carbon levels was determined based on analytical determinations of organic carbon content of the peat moss and reference sediment. The appropriate amount of peat moss was then combined with reference sediment to produce 7 kg of each sediment for testing.

2.7 Data Analysis

Analysis of acute toxicity data included the calculation of LC50 values. Computer programs were used to estimate the LC50 according to the trimmed Spearman-Karber method (Hamilton et al, 1977). LC50 values for sediment bioassays were calculated for nominal and measured S concentrations and measured IW and OW concentrations.

3.0 RESULTS AND DISCUSSION

3.1 Toxicity Tests and Analytical results

Results of each toxicity test (survival and ABS concentrations in IW, OW and S) are summarized in Tables 1 through 5. LC50 values are summarized in Table 6. Results of TOC analyses are presented in Table 7. A summary of ambient physical/chemical conditions present in the test exposures is presented in Table 8. A QA summary for MBAS and TOC analyses are provided in Tables 9 and 10.

Test temperature was outside the target range $(25\pm1^{\circ}C)$ once during the tests using the reference sediment only and the 3.0% organic carbon level (Table 7). This deviation was slight (0.1 to $0.6^{\circ}C$) and does not confound the results of the tests.

Due to the values obtained at the at the 200 and 400 mg/Kg exposures the measured IW MBAS values were not monotonically increasing with sediment concentration (Table 1). The IW samples were reanalyzed and a similar result was obtained.

There was not close agreement between the analytical estimate of organic carbon content in the reference sediment before testing (0.02%) and the estimate obtained from the reference control test exposure (0.35%). Since the measured organic carbon content of the controls of the 0.3, 0.6 and 1.2% organic carbon concentrations all exceed the target (nominal) value by 0.24 to 0.35%, the measured values shown in Table 8 may more closely reflect the true organic carbon content of the test systems.

3.2 Effect of Organic Carbon Concentration

Control survival was 100% at all organic carbon concentrations. MBAS control values were unaffected by organic carbon in the IW compartment but increased slightly with increasing organic carbon in the OW and S compartments. Control DO and pH dropped slightly with increasing organic carbon concentration while conductivity increased. Measured control TOC content increased with increasing nominal organic carbon concentration in all compartments. DOC in OW paralleled the TOC in OW at slightly reduced concentrations.

3.3 Effect of ABS Concentrations

Toxicity of ABS in reference sediment was similar to that seen in previous experiments (TRAC Report B-319, April 23, 1993). Increasing the organic concentration from 0.35% to 4.6% increased the LC50 by 4.5 and 4.6 times based on nominal and measured sediment ABS concentrations, respectively. LC50 estimates based on measured ABS concentrations in IW and OW were independent of organic carbon concentrations.

Nominal	Measur	Measured MBAS Concentrations			
Exposure (mg/Kg)	IW (mg/L)	OW (mg/L)	S (mg/Kg)	Surviving $(n = 20)$	
Control	ND	0.10	2.0	20	
100	11.8	3.97	63.6	19	
200	57.1	6.85	122	15	
400	42.9	10.2	215	11	
800	124	15.7	548	3	
1600	138	21.5	803	0	

Table 1. Results of toxicity test in reference sediment without peat moss. IW = interstitial water, OW = overlying water, S = sediment. Where applicable, values are presented as means of replicate analyses. ND = No data.

Table 2. Results of toxicity test in reference sediment with 0.3 % organic carbon as peat moss. IW = interstitial water, OW = overlying water, S = sediment. Where applicable, values are presented as means of replicate analyses.

Nominal	Measur	Measured MBAS Concentrations		
Exposure (mg/Kg)	IW (mg/L)	OW (mg/L)	S (mg/Kg)	Surviving $(n = 20)$
Control	< 0.01	0.10	3.5	20
200	32.0	5.35	125	11
400	43.3	10.3	297	8
800	73.0	12.8	600	5
1600	153	22.5	1304	0
3200	181	41.3	2632	0

Table 3. Results of toxicity test in reference sediment with 0.6 % organic carbon as peat moss. IW = interstitial water, OW = overlying water, S = sediment. Where applicable, values are presented as means of replicate analyses.

Nominal	Measur	Number		
Exposure (mg/Kg)	IW (mg/L)	OW (mg/L)	S (mg/Kg)	Surviving $(n = 20)$
Control	< 0.01	0.01	4.3	20
200	33.1	3.57	131	13
400	63.3	7.09	134	8
800	71.6	12.2	546	7
1600	176	21.1	1169	0
3200	208	35.0	3364	0

Table 4. Results of toxicity test in reference sediment with 1.2 % organic carbon as peat moss. IW = interstitial water, OW = overlying water, S = sediment. Where applicable, values are presented as means of replicate analyses. ND = No data.

1

F**

Nominal	Measur	Number		
Exposure (mg/Kg)	IW (mg/L)	OW (mg/L)	S (mg/Kg)	Surviving $(n = 20)$
Control	< 0.01	0.27	ND	20
400	29.8	3.79	600	13
800	76.5	6.45	146	12
1600	133	13.1	1576	3
3200	166	23.4	679	0
6400	167	38.6	6228	0

Table 5. Results of toxicity test in reference sediment with 3.0 % organic carbon as peat moss. IW = interstitial water, OW = overlying water, S = sediment. Where applicable, values are presented as means of replicate analyses.

Ţ.

٦

Nominal	Measur	ed MBAS Concen	Number Surviving	
Exposure (mg/Kg)	IW (mg/L)	OW (mg/L)	S (mg/Kg)	(n = 20)
Control	< .01	0.40	9.3	20
800	21.9	2.98	535	17
1600	55.4	7.02	890	12
3200	85.2	18.5	2319	1
6400	96.8	35.3	4919	0
9600	119	44.3	7449	0

Table 6. Summary of LC50 values (mg/L ABS as estimated from MBAS analysis) for each level of sediment organic carbon content (nominal) based on measured and nominal exposures from sediment tests. Values in parentheses = 95% confidence interval.

	% (weight/weight) Sediment Organic Carbon (nominal)				
Partition	0.02 (Reference)	0.3	0.6	1.2	3.0
Sediment (Nominal)	380 (294/491)	252 (177/541)	317 (172/587)	887 (526/1490)	1700 (1350/2130)
Sediment (Measured)	229 (178/296)	167 (64.3/434)	149 (72.5/307)	617 (594/641)	1045 (825/1323)
Overlying Water (Measured)	9.82 (8.37/11.5)	6.66 (3.23/13.7)	5.57 (3.23/9.62)	7.27 (4.65/11.4)	7.77 (5.75/10.5)
Interstitial Water (Measured)	56.8 (44.3/72.8)	35.9 (25.4/49.4)	48.8 (33.8/70.4)	80.4 (43.7/148)	52.6 (41.5/66.6)

Table 7. Mean and range (minimum/maximum) values for routine physical-chemical measurements in overlying water. DO = dissolved oxygen (mg/L), Temp = temperature ($^{\circ}$ C), Cond = specific conductance (µmhos/cm). See raw data (Appendix A) for DO, temp, pH and cond values at other exposures.

,

1

Organic Carbon Level	Exposure (Nominal)	DO	Temp	pН	Cond.
Reference	Control	6.9 6.0/8.2	25.1 24.4/25.4	7.7 7.6/7.8	402 379/415
	1600	6.9	25.9	7.8	451
	mg/Kg	6.2/8.1	25.0/26.6	7.7/7.9	400/500
	Control	6.6 5.8/7.7	25.1 24.6/25.3	7.7 7.6/7.7	408 390/420
0.3%	3200	6.6	25.2	7.8	464
	mg/Kg	5.8/7.7	24.6/25.5	7.7/7.9	425/495
	Control	6.7 6.2/7.7	24.9 24.2/25.4	7.6 7.6/7.6	430 390/480
0.6%	3200	7.5	24.7	7.8	451
	mg/Kg	7.1/8.3	24.1/25.4	7.7/7.9	411/482
	Control	6.6	25.1	7.6	425
	mg/Kg	5.7/7.9	24.8/25.5	7.5/7.6	390/450
1.2%	6400	7.3	24.9	7.7	480
	mg/Kg	6.7/8.4	24.1/25.5	7.6/7.8	409/550
3.0%	Control	5.9 5.5/6.5	25.7 25.0/26.1	7.4 7.4/7.5	553 465/605
	9600	6.9	25.3	7.6	527
	mg/Kg	6.4/7.4	24.5/25.8	7.5/7.6	430/600

Table 8. Total organic carbon content of IW, OW and S in toxicity tests using reference and Red River sediment. IW = interstitial water, OW = overlying water, S = sediment, ND = not determined. Where applicable, values are presented as means of replicate analyses.

7.

Organic	Test Exposure	Overlyin (mg		Interstitial	Sediment TOC
Carbon Level	(Nominal Sediment ABS)	DOC TOC		Water TOC (mg/L)	(% by weight)
	Control	3.65	4.08	9.07	0.35
	100	7.70	7.94	23.3	
	200	11.1	11.4	66.0	
Reference	400	10.7	11.7	49.4	
	800	14.8	16.0	92.3	
	1600	19.4	19.5	97.9	0.46
	Control	4.64	4.66	9.94	0.65
	200	8.24	8.32	49.4	
	400	9.54	10.7	55.5	
0.3%	800	13.6	14.4	96.5	
	1600	20.7	21.1	156	
	3200	28.6	30.2	325	0.99
	Control	4.79	4.99	18.0	0.84
	200	6.90	7.84	73.1	
	400	9.13	10.0	107	
0.6%	800	11.7	13.0	109	
	1600	17.4	18.6	233	
	3200	24.8	26.1	286	1.25

Table 8 (Continued). Total organic carbon content of IW, OW and S in toxicity tests using reference and Red River sediment. IW = interstitial water, OW = overlying water, S = sediment, ND = not determined. Where applicable, values are presented as means of replicate analyses.

Organic	Test Exposure	Overlying Water (mg/L)		Interstitial	Sediment TOC	
Carbon Level	(Nominal Sediment ABS)	DOC	TOC	Water TOC (mg/L)	(% by weight)	
	Control	6.09	5.93	25.3	1.47	
	400	7.98	8.01	83.8		
	800	9.49	9.55	186		
1.2%	1600	15.4	15.6	242		
	3200	20.3	20.6	319		
	6400	29.6	29.7	537	1.36	
	Control	7.44	9.06	35.7	4.64	
	800	9.65	9.93	233		
	1600	11.7	12.0	327		
3.0	3200	18.6	19.8	408		
	6400	31.2	30.2	526		
	9600	34.0	34.4	719	4.55	

Table 9. Summary of QC results for MBAS (methylene blue active substance) analyses. IW = interstitial water, OW = overlying water, S = sediment, ND = no data.

£

].

٦ ,

> ר י

1

1

• •

٤.

1 ·

Compartment	Organic Carbon Level	Replicate Analyses (% deviation)	Spike Recovery (%)
	Reference	0.4	99.3
	0.3%	ND	115
	0.6%	0.00	81
IW	1.2%	ND	80
	3.0%	5.0	44.2
	Reference	0.98	84.8
	0.3%	ND	98.4
	0.6%	3.7	96.8
OW	1.2%	ND	97.0
	3.0%	0.00	91.0
	Reference	0.00, 0.62, 14.4	96.8, 120
	0.3%	1.15	105
	0.6%	1.90	120
S	1.2%	2.07	135
	3.0%	3.45	ND

Compartment	Organic Carbon Level	Replicate Analyses (% deviation)	Spike Recovery (%)
	Reference	2.26	ND
IW	3.0%	0.43	101
	Reference	1.71	99.3
	0.3%	0.71	100
	0.6%	1.28	103
OW	1.2%	0.50	104
			1

3.0%

1.48

102

Table 10. Summary of QC results for total organic carbon analyses. IW = interstitial water, OW = overlying water, ND = no data.

1.

٦

1

.

4.0 REFERENCES

].

Ì

T

...

٦

Ì

) 11

4.4

*

Hamilton, M.A., R.C. Russo, and R.V. Thurston. 1977. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Env. Sci. Tech.11:714-719.

APPENDIX A: Toxicity Test Information

I. Toxicity Test Compound and Test Identification

Compound: Alkylbenzene sulfonate, Lot No. CC 8439

Formulation or Trade Name: Branched detergent slurry, NBP 4138558

Manufacturer and Location:

Monsanto Co. St. Louis, MO

TRAC ID: TB-1343

Date shipped: 09/12/89

Date Received: 09/13/89

Test Material Storage: 4°C

Test Material Volume or Weight: 3.8 L

Sample Time in Transit: 1 d

Shipping Route: Air

Shipped by: Federal Express

Received by: TRAC Laboratories, Inc.

Test Material Appearance: Yellowish white, soft, viscous

II. Test Organisms

Test Organism Culture Method: Appendix C

Test Organism Culture Medium: Appendix C

Organism Feeding During Test: None

III. Toxicity Test Specifications

Test Protocol Followed: Appendix B

Test Endpoint: Mortality

Carrier Solvent Used: None

Nominal or Measured Test Concentrations: Both

Photoperiod: DAY/NIGHT = 16 h/8 h

Light Intensity: 50 - 100 foot-candles

Test Containers:

۱

Type: PyrexTM

Size: 1 L

Dilution Water Source: TRAC

IV. In situ Measurements:

Dissolved Oxygen: Cole Parmer meter; Model 9070 (TRAC SOP 400.1)

pH: Cole Parmer meter; Model 5994-10 (TRAC SOP 401.1)

Temperature: Cole Parmer meter; Model 9070 (TRAC SOP 403.1)

Conductivity: Cole Parmer meter; Model 1481-55 (TRAC SOP 402.1)

Hardness: Titration, Standard Methods (Method 314B, APHA, 1985)

V. Raw Data

Raw data sheet numbers

REPORT PREPARED BY:

Patrick Downey 01 when Principal Investigator

STUDY DIRECTOR:

Vowhey 0 Zu Study Director

Statement of Quality Assurance

This study was reviewed by the Quality Assurance Officer to insure the methods, standard operating procedures, and protocol used in the performance of this study were the same as those specified herein, except as where noted.

Raw data audit: Final report audit: 8/95

Date

UUU)

Barney Venables, Ph.D. Quality Assurance Officer

HYALELLA AZTECA ACUTE SEDIMENT TEST SURVIVAL DATA

TRAC ID: TB-469

٦

Sponsor: SOAP AND DETERGENT ASSN.

Test Sybstance: Alkylbenzene sulfonate

Reference Sedienent

Age 15-19 Brood <u>H-069</u> A, B, CD

Exposure (mg/Kg)	R e p	<u># Orga</u> <u>Ali</u> 0		A I i	D e
	1			V e	a d
CONTROL		10	10		
	2	10	10	20	Ø
	1	10	10		
100	2	10	9	19	1(0)
	1	10	7(3)		
200	2	10	8(2)	15	5(5)
	1	(0	3(7)		
400	2	10	8(2)		9(9)
	1	10	0(10)		
800	2	10	3(7)	3	17(17)
	1	10	0(10)		
1600	2	10	0(10)	0	26.10)
	Load	In	mo		
Operator	Load Check	MAP	IN		

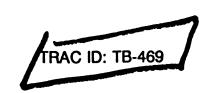
Comments

Countin parenthese = # bodie france

Begin	End
3/1/44	3/4/44
1430	1600

A5

SEDIMENT TEST CHEMISTRY



1

٦

Exposure	Disso	lved Oxy (ppm)	ygen
	0	24	48
Control	8.2	6.0	615
100	8.1	6.2	4.5
200	8. Z	6.4	<i>L</i> .7
400	8.2	6.6	6.9
800	8.1	6.5	6.8
1600	8.1	6.3	6.2
Operator	Sup	mp	
Time	1030	1300	
Meter #	3	3	
F	Tem	perature	°C
Exposure	0	24	48
Control 244	22.4	25.4	48 25.1 25.9 26.1
100 <u>عباب</u>	22.3	25.4	25.4
200 Z4.4	28.3	25.9	ZS.9
400 24.4	22.4	25.9	26.1
800 24.9		25.9	24.1
1600 25.0	23.0	26.0	24.1
	L	ļ	ļ
Operator	mp	mp	LT/JT
		1	1.43
Time 1423	1033	1302	100

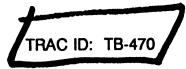
A6

]. }

1

زر

ξ.


. •

		pН		
Exposure	0	24	48	
Control	7.6	7.6	7.8	
100	7.6	7.7	7.8	
200	7.6	7.7	7.8	
400	7.7	7.8	7.8	
800	7.7	7.9	7.9	
1600	77	7.9	7.9	
Operator	mp	Smp		
Time	1036	BBCH		
Meter #	1	1		
	Conductivity (µmhos/cm)			
Exposure				
Exposure				
Exposure Control	(μ	mhos/cn 24	n)	
	(μ) Ο	mhos/cn	n) 48	
Control	(μ) Ο	mhos/cn 24 4/5	n) 48 412 426 430	
Control 100	(µ) 0 3°79 380 385	mhos/cn 24 4/5 420	n) 48 412 426	
Control 100 200	(µ) 0 3179 380	mhos/cn 24 4/5 420 425	n) 48 412 426 430	
Control 100 200 400	(µ 0 3°79 380 385 385 389	mhos/cn 24 4/5 420 425 429	n) 48 412 426 430	
Control 100 200 400 800	(µ 0 3°79 380 385 385 389 391	mhos/cn 24 4/5 420 425 429 439	n) 48 412 476 430 432 4477	
Control 100 200 400 800	(µ 0 3°79 380 385 385 389 391	mhos/cn 24 4/5 420 425 429 439	n) 48 412 476 430 432 4477	
Control 100 200 400 800	(4) 0 3°79 380 385 385 389 391 400	mhos/cn 24 4/5 420 425 429 439	n) 48 412 476 430 432 447	
Control 100 200 400 800 1600	(µ 0 3°79 380 385 385 389 391	24 4/5 420 425 429 439 500	n) 48 412 476 430 432 447 454 454	

() IE 3/3 mp

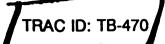
A7

HYALELLA AZTECA ACUTE SEDIMENT TEST SURVIVAL DATA

Sponsor: SOAP AND DETERGENT ASSN.

Test Substance: Alkylbenzene sulfonate

0.37. Organe Carbon


15-19 days H-069A, B, C, D Age 21 days Brood <u>H-069</u>B

Exposure	R e	<u># Orga</u> <u>Ali</u>		A I	D
(mg/Kg)	Р	0	48	۱ ۷	e a
CONTROL	1	10	10	θ	d
CONTROL	2	10	1D	20	0
	1	10	4(2)		
200	2	10	7(0)	11	9(2)
	1	10	5(3)		
400	2	10	3(4)	8	12(7)
	1	10	2(5)		
800	2	10	3(7)	5	15(12)
	1	10	0(10)		
1600	2	10	0(10)	0	20(70)
	1	JD	6(10)		
3200	2	10	0(10)	0	20(20)
	Load	Sup			
Operator	Load Check	Jub	MP/pm	}	

Comments

Begin	End
3-2.94	3/4/94
1550	1730
<u></u>	1730

SEDIMENT TEST CHEMISTRY

٠,

].

1

1

i u

1

::

Exposure	Disso	lved Oxy (ppm)	/gen
	0	24	48
Control	7.7	5,8	63
200	9.8	6.5	6.6
400	8.0	6.3	ما.با
800	<u>7</u> .7	6.4	いつ
1600	8.0	6.8	6.8
3200	8.0	7.	6.9
Zer Deplicate			له.لم
Operator	mp	mp	
Time	1113	1308	
Meter #	3	3	
		perature	°C
Exposure		perature 24	°C 48
	Tem 0	T	48
Control 24,4	Tem 0 ,231	24	48
Control 24,4 200 24,4	Tem 0 231 231	24 25.3 25.5 25.5	48 25:3 25:1 25:2
Control 24,4 200 24,4 400 24,4	Tem 0 231 23.1 23.0	24 25.3 25.5 25.5	48 25:3 25:1
Control 24,4 200 24,4 400 24,4 800 24,4	Tem 0 231 231 230 230	24 25.3 25.5 25.5	48 25:3 25:1 25:2
Control 24,4 200 24,4 400 24,4 800 24,4 1600 24,4	Tem 0 231 231 230 230 230	24 25.3 25.5 25.5 25.5	48 25:3 25:1 25:2 25:-1
Control 24,4 200 24,4 400 24,4 800 24,4 1600 24,4	Tem 0 231 231 230 230 230	24 25.3 25.5 25.5 25.5 25.5	48 25:3 25:1 25:2 25:1 25:1
Control 24,4 200 24,4 400 24,4 800 24,4 1600 24,4	Tem 0 231 231 230 230 230	24 25.3 25.5 25.5 25.5 25.5	48 25:3 25:1 25:2 25:1 25:1
Control 24,4 200 24,4 400 24,4 800 24,4 1600 24,4	Tem 0 231 231 230 230 230	24 25.3 25.5 25.5 25.5 25.5	48 25.3 25.1 25.2 25.1 25.1 25.1
Control 24,4 200 24,4 400 24,4 800 24,4 1600 24,4 3200 24,6	Tem 0 231 231 230 230 230 230 230 230	24 25.3 25.5 25.5 25.5 25.5	48 25.3 25.1 25.2 25.1 25.1 25.1

SEDIMENT TEST CHEMISTRY

].

٦

٦

r

		рН		
Exposure	0	24	48	
Control	7.6	7.6	ר.ר	
200	7.6	7,7	Γ,Γ	
400	7.6	7.7	ריר	
800	7.6	7,7	7.8	
1600	7.6	7, 8	7.8	
3200	7.7	7.9	し、ふ	
Operator	mp	Sup		
Time	1118	1312		
Meter #	1)		
	Conductivity (µmhos/cm)			
Exposure	1		- 1	
Exposure	1		- 1	
Exposure Control	(μ	mhos/cn	n) 48 420	
	(μ) Ο	mhos/cn 24	48 4 <i>2</i> 0 440	
Control	(µ) 0 390	mhos/cn 24 4/5	n) 48 420	
Control 200	(µ) 0 390 395	mhos/cn 24 4/5 429	48 4 <i>2</i> 0 440	
Control 200 400	(4) 390 395 399 401	mhos/cn 24 4/15 4/29 4/20 4/40 4/60	n) 48 420 440 439 455 473	
Control 200 400 800	(µ) 390 395 399	mhos/cn 24 4/5 429 430	n) 48 420 440 439 455	
Control 200 400 800 1600	(4) 390 395 399 401 415	mhos/cn 24 4/15 4/29 4/20 4/40 4/60	n) 48 420 440 439 455 473	
Control 200 400 800 1600	(4) 390 395 399 401 415	mhos/cn 24 4/15 4/29 4/20 4/40 4/60	n) 48 420 440 439 455 473	
Control 200 400 800 1600	(µ) 390 395 399 401 415 425	mhos/cn 24 4/5 429 430 440 460 472	n) 48 420 440 439 455 473	
Control 200 400 800 1600 3200	(4) 390 395 399 401 415	mhos/cn 24 4/5 429 430 440 460 472	n) 48 420 440 439 455 473	

A10

HYALELLA AZTECA ACUTE SEDIMENT TEST SURVIVAL DATA

TRAC ID: TB-471

Sponsor: SOAP AND DETERGENT ASSN.

Test Substance: Alkylbenzene sulfonate

0.670 Organic Carpon

15-19 Jacp H-069A, B, C, D Age HAND Brood H-069B

Exposure	R e	<u># Orga</u> <u>Ali</u>		A 	D
(mg/Kg)	р	0	48	ı V	e a
CONTROL	1	10	10	8	d
CONTIOL	2	10	<i>1</i> 0	20	0
	1	10	7(0)		
200	2	10	6(2)	813	7(2)
	1	10	3(6)		
400	2	10	5(3)	8	12(9)
	1	10	4(6)		
800	2	10	3(2)	7	35 (8)
4000	1	10	0(10)		
1600	2	10	O(q)	0	20(19)
0000	1	10	0(10)		
3200	2	10	0(10)	0	20(19)
	Load	m			1
Operator	Load Check	Smp	PM2		

Comments

Counts in prentier

A11

Begin	End
3-2-94	3/4/94
1600	1520

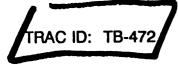
SEDIMENT TEST CHEMISTRY

ŀ

7

Exposure	Disso	lved Oxy (ppm)	/gen
	0	24	48
Control	77	6.3	6.2
200	8.0	6.5	6.5
400	8.2	6.5	6,8
800	8.2	6.5	7.0
1600	8.3	6.5	7.1
3200	8.3	7.0	7.1
Blank duplicity			6.1
Operator	MP	mp	
Time	1100	1316	
Meter #	3	3	
	Temperature °C		
	Tem	perature	°C
Exposure	Tem 0	perature 24	°C 48
	0		
Control 24	0	24 25.0	48 25,-1
Control 24, 2 200 24, 2	0	24 25.0 25.0	48 251 251
Control 24,2 200 Э.4.2 400 Э.4.1	0 22.5 22.5 226	24 25.0 25.0 25.0	48 251 251
Control 24,2 200 Э.4.2 400 Э.4.1	0 23.5 23.5 23.6 23.5	24 25.0 25.0	48 251 251 251 251
Control 24,2 200 24,2 400 24,1 800 34,1	0 22.5 22.5 22.5 22.5 22.5 22.5	24 25.0 25.0 25.0 25.0	48 251 251 251 251 251
Сопtrol 24,2 200 24,2 400 24,1 800 24,1 1600 24,1	0 22.5 22.5 22.5 22.5 22.5 22.5	24 25.0 25.0 25.0 25.0 25.0 24.8	48 251 251 251 251 251
Сопtrol 24,2 200 24,2 400 24,1 800 24,1 1600 24,1	0 22.5 22.5 22.5 22.5 22.5 22.5	24 25.0 25.0 25.0 25.0 25.0 24.8	48 251 251 251 251 251
Сопtrol 24,2 200 24,2 400 24,1 800 24,1 1600 24,1	0 22.5 22.5 22.5 22.5 22.5 22.5	24 25.0 25.0 25.0 25.0 25.0 24.8	48 251 251 251 251 251
Сопtrol 24, 2 200 24, 2 400 24, 1 800 24, 1 1600 24, 1 3200 24, 1	0 23.5 23.5 23.5 23.5 23.5 23.5 23.5	24 25.0 25.0 25.0 25.0 25.0 24.8	48 251 251 251 251 251

A12


SEDIMENT TEST CHEMISTRY

TRAC ID: TB-471

	рН				
Exposure	0	24	48		
Control	7.6	7.6	7.6		
200	7.6	7,7	ר,ר		
400	7.6	7,7	הר		
800	76	7.8	7.7		
1600	7.7	7.8	ר.ר		
3200	7.7	79	7.8		
Operator	mp	Smp			
Time	1105	1320			
Meter #					
	Conductivity (µmhos/cm)				
Exposure			-		
Exposure			-		
Exposure Control	(μι Ο	mhos/cn 24	n)		
	(µ	mhos/cn	n) 48		
Control	(µ) 0 390	mhos/cn 24 420	n) 48 480 435 440		
Control 200	(µ 0 390 395	mhos/cn 24 420 425	n) 48 480 435		
Control 200 400	(µ) 390 395 398 399	mhos/cn 24 420 425 429	n) 48 480 435 440 448 440 448		
Control 200 400 800	(µ) 0 390 395 398	mhos/cn 24 420 425 429 435	n) 48 480 435 440 448		
Control 200 400 800 1600	(µ) 390 395 398 399 405	mhos/cn 24 420 425 429 435 449	n) 48 480 435 440 448 440 448		
Control 200 400 800 1600	(µ) 390 395 398 399 405	mhos/cn 24 420 425 429 435 449	n) 48 480 435 440 448 440 448		
Control 200 400 800 1600	(µ 0 390 395 398 399 405 411	mhos/cn 24 420 425 429 435 449	n) 48 480 435 440 448 440 448		
Control 200 400 800 1600 3200	(µ) 390 395 398 399 405	mhos/cn 24 420 425 429 435 449 460	n) 48 480 435 440 448 460 482		

A13

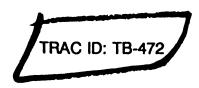
HYALELLA AZTECA ACUTE SEDIMENT TEST SURVIVAL DATA

Sponsor: SOAP AND DETERGENT ASSN.

Test Substance: Alkylbenzene sulfonate

1.27. Organie carton

Age 21 Aug Brood H-069A, B, C, D


Exposure (mg/Kg)	R e p	Alive		Alive		A i V	D e a
CONTROL	1	ID	10	8	b		
CONTROL	2	10	10	20	0		
	1	10	7(3)				
400	2	10	6(1)	13	7(4)		
	1	10	g(2)				
800	2	10	4(6)	12	8(9)		
	1	ID	2(3)				
1600	2	10	1(9)	3	17(17)		
	1	10	O(7)				
3200	2	10	0(8)	0	20(15)		
	1	10	0(9)				
6400	2	10	0(8)	0	20(17)		
	Load	Smp					
Operator	Load Check	Smp	MP				

Comments Counts in paunthe

A14

Begin End 3-2.9

].

1

١

1

Exposure	Dissolved Oxygen (ppm)			
	0	24	48	
Control	7.9	6.1	5,77	
400	8.3	6.1	6.2	
800	8.3	6.4	6.5	
1600	8.4 6.5		ما.ما	
3200	8.4 6.7		6.9	
6400	8.4	6.7	6.8	
Operator	mp	Sund		
Time	1040	1324		
Meter #	3	3		
_	Temperature ^o C			
Exposure				
	0	24	48	
	0		48 25:5	
Control <u>14 y</u>		25.0		
Control 24.8			25,5	
Control <u>24.8</u> 400 9 4.6		Ә5.0 Ә5.0 Ә5.0	25.5 25.5	
Control <u>24.8</u> 400 <u>9</u> 4.6 800 2.H.0	22.0 22.0 22.0	Ә5.0 Ә5.0 Ә5.0	25.5 25.5 25.5 25.5	
Control <u>24.8</u> 400 <u>94.6</u> 800 <u>24.0</u> 1600 <u>23.8</u>	22.0 22.0 23.0 23.0 23.0	25.0 25.0 25.0 25.0	25.5 25.5 25.5 25.5	
Control <u>24.8</u> 400 <u>94.6</u> 800 <u>211.0</u> 1600 <u>23.8</u> 3200 24.0	22.0	25.0 25.0 25.0 25.0	25.5 25.5 25.5 25.5	
Control <u>24.8</u> 400 <u>94.6</u> 800 <u>211.0</u> 1600 <u>23.8</u> 3200 24.0	22.0	25.0 25.0 25.0 25.0	25.5 25.5 25.5 25.5	
Control <u>24.8</u> 400 <u>94.6</u> 800 <u>211.0</u> 1600 <u>23.8</u> 3200 24.0	22.0	25.0 25.0 25.0 25.0 25.1	25.5 25.5 25.5 25.5	
Control <u>14.8</u> 400 <u>94.6</u> 800 <u>14.0</u> 1600 <u>23.8</u> 3200 <u>24.0</u> 6400 <u>14.1</u>	22.0	25.0 25.0 25.0 25.0 25.1	25.5 25.5 25.5 25.5	

ĂБ

	рН			
Exposure	0	24	48	
Control	7.5	7.6	7.6	
400	7.5	7.6	2.6	
800	7.5	7,7	7,6	
1600	7.5	7.7	7.6	
3200	7.6	7,8	\sum_{i}	
6400	7.6	7.8	7.7	
Operator	mP	mp		
Time	1052	1328		
Meter # 0	31	81		
	Conductivity (µmhos/cm)			
Exposure				
Exposure				
Exposure Control	(μι Ο	mhos/cn	n) 48	
	μ	mhos/cn 24	n) 48 450	
Control	(μι Ο	mhos/cn 24 435 445	n) 48 450 460 465	
Control 400	(µ1 0 390 398 400	mhos/cn 24 435 445 448	n) 48 450 460	
Control 400 800	(µ1 0 390 398 400 405	mhos/cn 24 435 445 448 460	n) 48 460 465 485	
Control 400 800 1600	(µ1 0 390 398 400	mhos/cn 24 435 445 448	n) 48 450 460 465	
Control 400 800 1600 3200	(µ1 0 390 398 400 405 405	mhos/cn 24 435 445 448 460 465	n) 48 450 460 465 485 485 490	
Control 400 800 1600 3200	(µ1 0 390 398 400 405 405	mhos/cn 24 435 445 448 460 465 480	n) 48 460 460 465 485 485 490 550	
Control 400 800 1600 3200	(µ1 0 390 398 400 405 405	mhos/cn 24 435 445 448 460 465 480	n) 48 460 460 465 485 485 490 550	
Control 400 800 1600 3200 6400	(41) 390 398 400 405 405 409	mhos/cn 24 435 445 448 460 465 480	n) 48 460 460 465 485 485 490 550	

@ IE 3/3 mp

A16

SEDIMENT TEST CHEMISTRY

Exposure	Dissolved Oxygen (ppm)			
	0	24	48	
Control	6,5	5,5	5.8	
800	7.1	5.9	ما,ک	
1600	7.2	6.0	٥.٧	
3200	7.5	63	6.4	
6400	7.4	6.4	6.5	
9600	7.6	6.5	له،ل	
800 Deplicate			รก	
Operator	mp	SUD		
Time	1122	1332		
Meter #	3	3		
	Temperature ^o C			
	Tem	perature	⇒°C	
Exposure	Tem 0	perature 24	er °C 48	
	0	1	1	
Control 25.0	0 23.9	24 26.0	48 76.1	
Control 25.0 800 25.0	0 22.9 22.9	24 26.0 25.8 35.8	48 Z.6.1 Z.6.1 25.9	
Control 25.0 800 25.0 1600 24.7	0 22.9 22.9	24 26.0 25.8 25.8 25.7	48 Z.6.1 Z.6.1 Z.5.9 Z.5.8	
Control 25.0 800 25.0 1600 24.7 3200 24.4	0 22.9 23.9 23.8 23.8	24 26.0 25.8 25.8 25.7	48 Z.6.1 Z.6.1 Z.5.9 Z.5.8	
Control 25.0 800 25.0 1600 24.7	0 22.9 23.9 23.8 23.8 25.8 25.8	24 26.0 25.8 25.8 25.7	48 Z.6.1 Z.6.1 25.9	
Control 25.0 800 25.0 1600 24.7 3200 24.6 6400 24.5	0 22.9 23.9 23.8 23.8 25.8 25.8	24 26.0 25.8 25.8 25.7	48 Z.6.1 Z.6.1 Z.5.9 Z.5.8	
Control 25.0 800 25.0 1600 24.7 3200 24.6 6400 24.5	0 22.9 23.9 23.8 23.8 25.8 25.8	24 26.0 25.8 25.8 25.7	48 Z.6.1 Z.6.1 Z.5.9 Z.5.8	
Control 25.0 800 25.0 1600 24.7 3200 24.6 6400 24.5	0 22.9 23.9 23.8 23.8 25.8 25.8	24 26.0 25.8 25.8 25.6 25.6 25.6	48 Z.6.1 Z.6.1 Z.5.9 Z.5.8	
Control <u>25.0</u> 800 <u>25.0</u> 1600 <u>24.7</u> 3200 24.6 6400 <u>24.5</u> 9600 <u>34.5</u>	0 22.9 22.9 23.8 23.8 25.8 25.8 25.8	24 26.0 25.8 25.8 25.7	48 Z.6.1 Z.6.1 Z.5.9 Z.5.8	

A 18

SEDIMENT TEST CHEMISTRY

١

TRAC ID: TB-473

?

3

		pН			
Exposure	0	24	48		
Control	7.4	7.4	א,ר		
800	7.4	7.5	7.5		
1600	7.4	7.5	7.5		
3200	7.5	7.4	7.5		
6400	7.5	7.6	7,6		
9600	7.5	7.6	7.6		
Operator	mp	mp			
Time	1127	1336			
Meter #					
and the second	Conductivity (µmhos/cm)				
Exposure			-		
Exposure			-		
Exposure	μ) 0	mhos/cr	n)		
	(µ 0 465	mhos/cr 24	n) 48		
Control	μ) 0	mhos/cr 24 605	n) 48 590 520 530		
Control 800	465 420 415	mhos/cr 24 605 595	n) 48 590 520		
Control 800 1600	465 420 415 420	mhos/cr 24 605 595 510	n) 48 590 520 530		
Control 800 1600 3200	465 420 415	mhos/ar 24 605 595 510 515	n) 48 590 520 530 580		
Control 800 1600 3200 6400	465 420 415 420 435	mhos/cr 24 605 595 510 515 590	n) 48 590 520 530 530 580 610		
Control 800 1600 3200 6400	465 420 415 420 435	mhos/cr 24 605 595 510 515 590	n) 48 590 520 530 530 580 610		
Control 800 1600 3200 6400	465 420 415 420 435	mhos/cr 24 605 595 510 515 590	n) 48 590 520 530 530 610 600		
Control 800 1600 3200 6400 9600	(4) 465 420 415 420 435 430	mhos/cr 24 605 595 510 515 590 550	n) 48 590 520 530 530 610 600		

A 19

GENERAL DATA SHEET

SPONSOR___SD TRAC ID <u>TB-464 - 473</u> 2/25/96 ABS Stock Prep Pripare 500 ml of 100 g ABS/L Slurry is 20.2% active ABS -> -= 4.959 Slurry/19 ABS 0.202 = 4.959 Slurry/19 ABS 100g/L = 50g/500mL = 50×4.95 = 248 g Slury/ 500m2 De Chlounder 1420.

GENERAL DATA SHEET

SDA SPONSOR Peference Sediment & Pert Mores Mixing Perfuner = 43.5% OC 239 heaturet Preper 7 kg of each OC level OC level <u>20 Cneeded</u> <u>21x 2.3 = 48.3</u> 48.3 0.003×7000 = 2 / 0.3% 96.6 42 0.6 70 193.2 84 483 1.2 210 3.0

AZT

DEVIATIONS FROM PROTOCOL

SPONSOR_SDA TRAC ID 18-469, 473 DATE_<u>3/4/94</u> DEVIATION: Dempiritiers autile spécified range on a Contrat & 800 mg exposure & TB-473, 400, 800 \$1600 mg exposure of TB-469 at endofted

REASON FOR DEVIATION: Uneven heating of test room

CORRECTIVE ACTION:

None. Occurred 48h = endeflect

A22

TRIMMED SPEARMAN-KARBER METHOD. MONTANA STATE UNIV

Hermed IW

FOR REFERENCE, CITE: IAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. **TRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN** LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

DURATION: 48 H TEST NUMBER: TB-469 DATE: 3/2/94 SPECIES: H. AZTECA CHEMICAL: ABS

RAW DATA:

• ٦

i 1

CONCENTRATION(MG/L)	11	.80 4	2.90	57.10	124.00 138.00
NUMBER EXPOSED:	20	20	20	20	20
MORTALITIES: 1	9	5	17	20	
SPEARMAN-KARBER TRIM:		5	.00%		

(56.82) SPEARMAN-KARBER ESTIMATES: LC50: 44.33 95% LOWER CONFIDENCE: ~ • 72.82 95% UPPER CONFIDENCE:

, NOTE: MORTALITY PROPORTIONS WERE NOT MONOTONICALLY INCREASING. ADJUSTMENTS WERE MADE PRIOR TO SPEARMAN-KARBER ESTIMATION.

Menual IW 0.370

TRIMMED SPEARMAN-KARBER METHOD. MONTANA STATE UNIV

FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. TRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN ETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

DATE: 3/2/94 TEST NUMBER: TB470 DURATION: 48 H CHEMICAL: ABS; IW SPECIES: H. AZTECA
RAW DATA:
CONCENTRATION(MG/L) 32.00 43.30 73.00 153.00 181.00
NUMBER EXPOSED: 20 20 20 20 20
MORTALITIES: 9 12 15 20 20
SPEARMAN-KARBER TRIM: 45.00%
\bigcirc
SPEARMAN-KARBER ESTIMATES: LC50: (35.39
95% LOWER CONFIDENCE: 25.36
95% UPPER CONFIDENCE: 49.40
. A23

FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. TRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON, SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

Meanured IW 0.6%

TEST NUMBER: TB-471 DATE: 3/2/94 CHEMICAL: ABS MEASURED

DURATION: 48 H SPECIES: H. AZTECA

RAW DATA:

CONCENTRATION(PPM IW) 33.10 63.30 71.60 176.00 208.00 NUMBER EXPOSED: 20 20 20 20 20 7 12 13 20 20 MORTALITIES: 35.00% SPEARMAN-KARBER TRIM:

SPEARMAN-KARBER ESTIMATES: LC50: 48.81 95% LOWER CONFIDENCE: 33.83 95% UPPER CONFIDENCE: 70.43

TRIMMED SPEARMAN-KARBER METHOD. MONTANA STATE UNIV

FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. **FRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN** LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

TEST NUMBER: TB-472 DATE: 3/2/94 CHEMICAL: ABS MEASURED

DURATION: 48 H SPECIES: H. AZTECA

RAW DATA: CONCENTRATION(MG/I	(ر ار	29	.80 7	6.50 1	33.00	162.00	166.00
NUMBER EXPOSED:	-,	20	20	20	20	20	
MORTALITIES:	7	8	17	20	20		
SPEARMAN-KARBER TR	IM:		35	5.00%			

80.38 SPEARMAN-KARBER ESTIMATES: LC50: 95% LOWER CONFIDENCE: 43.72 95% UPPER CONFIDENCE: 147.77 _____

Meanured IW 1.27.

A24

FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. **FRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN** LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

Meanured IW 375

÷.

A25

DURATION: 48 H TEST NUMBER: TB-473 DATE: 3/2/94 SPECIES: H. AZTECA CHEMICAL: ABS; IW

RAW DATA:

CONCENTRATION(MG/L	M	EA)	21.90	55.4	40 85	.20 8	96.80	119.0	0
NUMBER EXPOSED:		20		20		20			
MORTALITIES:	3	8	19	20	20				
SPEARMAN-KARBER TR	IM:		15.	00%					

SPI	EARMAN-KARBER ESTIMATES:	LC50:	52.58
	95% LOWER CONFIDENCE:	41.50	
	95% UPPER CONFIDENCE:	66.58	
·			*****

53

1

FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. IRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; ORRECTION 12(4):417 (1978).

llef Sed Vomina Sediment Conc.

DURATION: 48 H TEST NUMBER: TB-469 DATE: 3/2/94 SPECIES: H. AZTECA CHEMICAL: ABS

RAW DATA:

CONCENTRATION(MG/KC	3 NO)	100.0	00 20	0.00 4	00.00 80	0.001600.00
NUMBER EXPOSED:	20			20	20	
MORTALITIES:	15	9	17	20		
SPEARMAN-KARBER TRI	M:	5.	.00%			

SPEARMAN-KARBER ESTIMATES: LC50: 379.98 95% LOWER CONFIDENCE: 293.61 95% UPPER CONFIDENCE: 491.77

- 4

1.

TRIMMED SPEARMAN-KARBER METHOD. MONTANA STATE UNIV

FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. IRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

0.03 0.37 Nomin Sed

DATE: 3/2/94 TEST NUMBER: TB-470 DURATION: 48 H CHEMICAL: ABS SPECIES: H. AZTECA

RAW DATA:

 CONCENTRATION(MG/KG NO)
 200.00
 400.00
 800.001600.003200.00

 NUMBER EXPOSED:
 20
 20
 20
 20

 MORTALITIES:
 9
 12
 15
 20
 20

 SPEARMAN-KARBER TRIM:
 45.00%

SPEARMAN-KARBER ESTIMATES: LC50: 251.98 95% LOWER CONFIDENCE: 117.38 95% UPPER CONFIDENCE: 540.96

A 26

FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. FRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

Nominal Sediment Conc. 0.670

DURATION: 48 H TEST NUMBER: TB-471 DATE: 3/2/94 SPECIES: H. AZTECA CHEMICAL: ABS

RAW DATA: CONCENTRATION(MG/KG NO) 200.00 400.00 800.001600.003200.00 20 20 20 20 20 NUMBER EXPOSED: 7 12 13 20 20 MORTALITIES: 35.00% SPEARMAN-KARBER TRIM:

SPEARMAN-KARBER ESTIMATES: LC50: 317.48 171.72 95% LOWER CONFIDENCE: 586.97 95% UPPER CONFIDENCE:

TRIMMED SPEARMAN-KARBER METHOD. MONTANA STATE UNIV

FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. TRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

DURATION: 48 H TEST NUMBER: TB-472 DATE: 3/2/94 SPECIES: H. AZTECA CHEMICAL: ABS

RAW DATA: CONCENTRATION(MG/KG NO) 400.00 800.001600.003200.006400.00 20 20 20 20 20 NUMBER EXPOSED: 20 20 MORTALITIES: 7 8 17 SPEARMAN-KARBER TRIM: 35.00%

SPEARMAN-KARBER ESTIMATES: LC50: 886.52 526.20 95% LOWER CONFIDENCE: 95% UPPER CONFIDENCE: 1493.57

Nominal Sedeman 1.270

Nominal Sediment Conc. 3.70

FOR REFERENCE, CITE: IAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. RIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; **CORRECTION 12(4):417 (1978).**

DURATION: 48 H TEST NUMBER: TB-473 DATE: 3/2/94 SPECIES: H. AZTECA CHEMICAL: ABS

RAW DATA:

CONCENTRATION(MG/KG NO) 800.001600.003200.006400.009600.00 20 20 20 20 20 NUMBER EXPOSED: 3 8 19 20 20 MORTALITIES: SPEARMAN-KARBER TRIM: 15.00%

SPEARMAN-KARBER ESTIMATES: LC50: 1696.41 95% LOWER CONFIDENCE: 1348.10 2134.72 95% UPPER CONFIDENCE:

A28

FOR REFERENCE, CITE: 'AMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. 'RIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

Kel Sed Mining (111)

DATE: 3/2/94 TEST NUMBER: TB-469 CHEMICAL: ABS MEASURED DURATION: 48 H SPECIES: H. AZTECA

RAW DATA:

•

CONCENTRATION(MG/L OW)3.976.8510.2015.7021.50NUMBER EXPOSED:2020202020MORTALITIES:1591720SPEARMAN-KARBER TRIM:5.00%

SPEARMAN-KARBER ESTIMATES:LC50:9.8295% LOWER CONFIDENCE:8.3795% UPPER CONFIDENCE:11.53

TRIMMED SPEARMAN-KARBER METHOD. MONTANA STATE UNIV

Measured Seed

FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. TRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

DATE: 3/2/94 TEST NUMBER: TB-469 CHEMICAL: ABS MEASURED DURATION: 48 H SPECIES: H. AZTECA

 RAW DATA:

 CONCENTRATION(MG/KG SE)
 63.60 122.00 215.00 548.00 803.00

 NUMBER EXPOSED:
 20
 20
 20
 20

 MORTALITIES:
 1
 5
 9
 17
 20

 SPEARMAN-KARBER TRIM:
 5.00%

SPEARMAN-KARBER ESTIMATES: LC50: 229.39 95% LOWER CONFIDENCE: 177.52 95% UPPER CONFIDENCE: 296.40

Ą29

FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. **FRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN** LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

0.3 %

TEST NUMBER: TB-470 DATE: 3/2/94 CHEMICAL: ABS MEASURED

DURATION: 48 H SPECIES: H. AZTECA

RAW DATA:

CONCENTRATION(MG/LOW) 5.35 10.30 12.80 22.50 41.30 NUMBER EXPOSED: 20 20 20 20 20 9 12 15 20 20 MORTALITIES: 45.00% SPEARMAN-KARBER TRIM:

SPEARMAN-KARBER ESTIMATES: LC50: 6.66 95% LOWER CONFIDENCE: 3.23 95% UPPER CONFIDENCE: 13.70

TRIMMED SPEARMAN-KARBER METHOD. MONTANA STATE UNIV

0.3% Meanured Soul

FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. TRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

DATE: 3/2/94 TEST NUMBER: TB-470 CHEMICAL: ABS MEASURED

DURATION: 48 H SPECIES: H. AZTECA

RAW DATA: CONCENTRATION(MG/KG SE) 125.00 297.00 600.001304.002632.00 NUMBER EXPOSED: 20 20 20 20 20 9 12 15 20 20 MORTALITIES: SPEARMAN-KARBER TRIM: 45.00% 166.80

SPEARMAN-KARBER ESTIMATES: LC50: 95% LOWER CONFIDENCE: 64.26 95% UPPER CONFIDENCE: 432.96

A.30

0.6% Munured OW

FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. FRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

DATE: 3/2/94 TEST NUMBER: TB-471 CHEMICAL: ABS MEASURED DURATION: 48 H SPECIES: H. AZTECA

A31

RAW DATA:

 CONCENTRATION(MG/L OW)
 3.57
 7.09
 12.20
 21.10
 35.00

 NUMBER EXPOSED:
 20
 20
 20
 20
 20

 MORTALITIES:
 7
 12
 13
 20
 20

 SPEARMAN-KARBER TRIM:
 35.00%

SPEARMAN-KARBER ESTIMATES:LC50:5.5795% LOWER CONFIDENCE:3.2395% UPPER CONFIDENCE:9.62

TRIMMED SPEARMAN-KARBER METHOD. MONTANA STATE UNIV

FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. TRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

DATE: 3/2/94 TEST NUMBER: TB-471 DURATION: 48 H CHEMICAL: ABS; SED SPECIES: H. AZTECA

RAW DATA:

 CONCENTRATION(MG/KG ME)
 131.00
 134.00
 546.001169.003364.00

 NUMBER EXPOSED:
 20
 20
 20
 20

 MORTALITIES:
 7
 12
 13
 20
 20

 SPEARMAN-KARBER TRIM:
 35.00%

SPEARMAN-KARBER ESTIMATES:LC50:149.2395% LOWER CONFIDENCE:72.5095% UPPER CONFIDENCE:307.16

Meanured Sert

FOR REFERENCE, CITE: JAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. RIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. -ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

1.2% Meanured OU

DATE: 3/2/94 TEST NUMBER: TB-472 I CHEMICAL: ABS MEASURED SH

DURATION: 48 H SPECIES: H. AZTECA

 RAW DATA:

 CONCENTRATION(MG/L OW)
 3.79
 6.45
 13.10
 23.40
 38.60

 NUMBER EXPOSED:
 20
 20
 20
 20
 20

 MORTALITIES:
 7
 8
 17
 20
 20

 SPEARMAN-KARBER TRIM:
 35.00%

SPEARMAN-KARBER ESTIMATES:LC50:7.2795% LOWER CONFIDENCE:4.6595% UPPER CONFIDENCE:11.38

- 1

TRIMMED SPEARMAN-KARBER METHOD. MONTANA STATE UNIV

Menuned Sel

FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. RIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

JATE: 3/2/94 TEST NUMBER: TB-472 CHEMICAL: ABS MEASURED

DURATION: 48 H SPECIES: H. AZTECA

 RAW DATA:

 CONCENTRATION(MG/KG SE)

 146.00
 600,00
 679.001576.006228.00

 NUMBER EXPOSED:
 20
 20
 20

 MORTALITIES:
 8
 7
 20
 17
 20

 SPEARMAN-KARBER TRIM:
 37.50%

SPEARMAN-KARBER ESTIMATES: LC50: 617.11 95% LOWER CONFIDENCE: 594.03 95% UPPER CONFIDENCE: 641.07

NOTE: MORTALITY PROPORTIONS WERE NOT MONOTONICALLY INCREASING. ADJUSTMENTS WERE MADE PRIOR TO SPEARMAN-KARBER ESTIMATION.

A32

FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. FRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

370 Menured OW

DATE: 3/2/94 TEST NUMBER: TB-473 CHEMICAL: ABS MEASURED DURATION: 48 H SPECIES: H. AZTECA

RAW DATA:

CONCENTRATION(MG/L OW)2.987.0218.5035.3044.30NUMBER EXPOSED:2020202020MORTALITIES:38192020SPEARMAN-KARBER TRIM:15.00%

SPEARMAN-KARBER ESTIMATES:LC50:7.7795% LOWER CONFIDENCE:5.7595% UPPER CONFIDENCE:10.50

-

1

TRIMMED SPEARMAN-KARBER METHOD. MONTANA STATE UNIV

FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. TRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

Meanured Sed

DATE: 3/2/94 TEST NUMBER: TB-473 CHEMICAL: ABS MEASURED DURATION: 48 H SPECIES: H. AZTECA

 'RAW DATA:

 CONCENTRATION(MG/L SED)

 535.00

 NUMBER EXPOSED:

 20
 20

 MORTALITIES:
 3

 SPEARMAN-KARBER TRIM:
 15.00%

 SPEARMAN-KARBER ESTIMATES:
 LC50:
 1045.44

 95% LOWER CONFIDENCE:
 825.50

95% UPPER CONFIDENCE: 1323.97

A33

FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. IRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

TO-446 469 IW

DATE: 3/2/94 TEST NUMBER: TB-469 DURATION: 48 H CHEMICAL: ABS SPECIES: H. AZTECA

RAW DATA:
CONCENTRATION(MG/L)11.8042.9057.10124.00138.00NUMBER EXPOSED:20202020MORTALITIES:1591720SPEARMAN-KARBER TRIM:5.00%

A 34

SPEARMAN-KARBER ESTIMATES: LC50: 58.47 95% LOWER CONFIDENCE: 46.07 95% UPPER CONFIDENCE: 74.21

teruming lakels f 200 syco my/kg

QUALITY ASSURANCE REVIEW

TEST SUBSTANCE: Branched detergent slurry; alkylbenzene sulfonate (ABS; T-1343).

TRAC ID: TB-469, TB-470, TB-471, TB-472, TB-473

SPONSOR: Soap and Detergent Association

STUDY DIRECTOR: Patrick Downey

7. 1.

7

QUALITY ASSURANCE OFFICER: Barney Venables

LABORATORY ASSISTANT: Melody Pride, Nhung Tran

TEST SYSTEM: Hyallela azteca in reference sediment + peat moss and dechlorinated tap water.

A 35

QA Review Page 3 of 3

Attach comments on a separate page.

•••

].

7

.

1

n U

17

11

• •

5.8 2.5

2

INITIAL	DATE
BV	3/07/90
BU	3/02/94
BV	3/07/14
	BV BU

A37

TEST PROTOCOL FOR CONDUCT OF SEDIMENT TOXICITY TESTS WITH HYALELLA AZTECA IN REFERENCE SEDIMENT: ORGANIC CARBON MANIPULATIONS

TEST SUBSTANCE: Branched detergent slurry; alkylbenzene sulfonate (ABS; T-1343).

TRAC ID: TB-469, TB-470, TB-471, TB-472, TB-473

SPONSOR: Soap and Detergent Association

STUDY DIRECTOR: Patrick Downey

QUALITY ASSURANCE OFFICER: Barney Venables

LABORATORY ASSISTANT: Melody Pride, Nhung Tran

TEST SYSTEM: Hyallela azteca in reference sediment + peat moss and dechlorinated tap water.

Written: February 25, 1994

Reviewed: February 27, 1994

Approved

Patrick Downey, Study Director

Barney Venables, Quality Assurance Officer

1.0 INTRODUCTION

This protocol is written specifically for the "Sediment/ABS" project Sponsored by the Soap and Detergent Association (475 Park Ave. South, New York, NY 10016). Documentation of test conduct is to be carried out per "Good Laboratory Practices; 40 CFR Part 792, August 1989".

All applicable documentation of activities associated with this test is found in the raw data.

Three series of tests will be conducted. Each series will include four simultaneous toxicity tests. Each toxicity test will consist of five alkylbenzene sulfonate (ABS) concentrations and a control. Each toxicity test will be prepared as follows.

1) Test TB-469: Exposure concentrations will be prepared by mixing ABS with TRAC reference sediment (Lot #1).

2) Test TB-470: Exposure concentrations will be prepared by mixing ABS with TRAC reference sediment (Lot #1) which has been mixed with peat moss to produce sediment with a target total organic carbon (TOC) content of 0.3%.

3) Test TB-471: Prepared as TB-470 except with a target sediment TOC content of 0.6%.

4) Test TB-472 Prepared as TB-470 except with a target sediment TOC content of 1.2%.

5) Test TB-473 Prepared as TB-470 except with a target sediment TOC content of 3.0%.

Three replicates of each exposure will be prepared (See below). One replicate will contain the interstitial water (IW) sampler. The same replicate will be sacrificed at the beginning of the test to provide samples for analytical determination of methylene blue active substance (MBAS) and TOC. The two remaining replicates of each exposure will contain organisms for the toxicity test.

The following analytical determinations will be made:

1) MBAS concentration in IW, overlying water (OW) and sediment of each exposure and control of each test.

2) TOC in sediment of the unspiked control and the highest test exposure.

3) TOC in the IW and OW of each exposure.

D:\SDA\SOP.3

11

4) Particle size distribution (per Gee and Bauder, 1986) and cation exchange capacity (per Plumb, 1981) will be determine on TRAC Reference Sediment, Lot #1.

The toxicity test will begin and IW, OW and sediment samples will be collected after the overlying water and the sediment loaded with ABS have been in contact for 24 h. The toxicity test will last 48 h with no renewal.

2.0 SOURCE OF ORGANISMS

The amphipod Hyalella azteca is cultured in-house according to SOP 105.1.

3.0 PREPARATION OF ORGANISMS

Organisms to be used for this project will be H. azteca neonates 14 - 20 d of age. Neonates are removed from each culture jar 20 d before the beginning of the test. Neonates are again removed from the culture jars twice at three day interval. These neonates are maintained in dechlorinated tap water until used in the tests.

4.0 PREPARATION OF EXPOSURES

4.1 Addition of Peat Moss

Analytical determination of TOC in TRAC reference sediment (Lot #1) has been determined to be 0.02% and is considered to be negligible relative to the added amounts. An amount of peat moss will be added to 7 Kg (dry wt.) portions of the reference sediment to produce four sediment matrices with TOC content of 0.3, 0.6, 1.2 and 3%.

4.2 Stock ABS solution

ABS slurry (TRAC ID T-1343) was delivered to TRAC on 09/13/89. This slurry was prepared by Monsanto and reported to have an MBAS content of 20.2%. A stock ABS solution containing 100 g/L ABS slurry will be prepared by dissolving 248 g ABS slurry into 500 mL dechlorinated tap water. Errors in preparation may result from foaming of the solution during preparation. These errors are minimized by allowing the foam to dissipate before bringing the solution to final volume. This solution is stored at 4° C before it is used.

4.3 Loading Sediment With ABS

Previous range finding tests (TRAC Report B-450) indicate preparation of exposures as in Table 4.1. The ABS is to be loaded on the sediment as follows. For each exposure the appropriate amount of ABS stock (Table 4.2) is combined with dechlorinated tap

water to produce 200 mL total volume. One Kg of reference sediment is placed in a glass bowl. The 200 mL sample is then added to the sediment and thoroughly mixed by hand with a TeflonTM spoon. The sediment is then ready to place in the test vessels.

Organic Carbon Level (% Organic Carbon as Peat Moss, by Weight)	Test Concentrations (mg Active ABS/Kg Sediment)
0.02 (Reference)	100, 200, 400, 800, 1600
0.3	200, 400, 800, 1600, 3200
0.6	200, 400, 800, 1600, 3200
1.2	400, 800, 1600, 3200, 6400
3.0	800, 1600, 3200, 6400, 9600

Table 4.1. Definitve test exposures.

西日

13

Li

17

Table 4.2 Volumes of ABS stock (100 g/L) to be added to 1 Kg sediment to achieve the indicated exposures.

ABS Slurry Sediment Concentration (mg/Kg)	mL ABS Stock Added to 1 kg Sediment
100	1.0
200	2.0
400	4.0
. 800	8.0
1600	16
3200	32
6400	64
9600	96

4.4 Preparation of IW Samplers

One 47 mm glass fiber filter (Gelman A/E) is placed over the fritted end of each sampler (Pittinger et al, 1988) and secured with a rubber band. A small mark is made on the sampler 1.5 cm above the fritted glass bottom using a permanent marker. The open end of each sampler is then plugged with a rubber stopper.

4.5 Preparation of Test Vessels (Day 1)

Test vessels are 1 L glass beakers. The test vessels which are to contain the IW samplers are prepared before the addition of sediment. Three hundred and fifty g of the appropriate loaded sediment are placed in the beaker and spread evenly on the bottom. Using a pipet, 50 mL dechlorinated tap water are then poured evenly over the sediment. The sides of the beaker are tapped gently with a finger to settle the sediment. Using rubber bands, the samplers are affixed to a horizontal rod which places the samplers in the middle of the beakers. Each IW sampler is then slowly lowered into the sediment until the mark on the sampler is even with the surface of the sediment. After the samplers are in place, sediment is then introduced into the remaining test vessels without IW samplers exactly as above.

After sediment has been introduced into all test vessels, 800 mL dechlorinated tap water are gently siphoned into each vessel using a glass pipet and TygonTM tubing. The test vessels are allowed to stand for 24 h before organisms are introduced.

5.0 BEGINNING THE TEST (Day 2)

5.1 Initial In Situ Measurements

On the day the test is to begin (Day 2), initial measurements of temperature (SOP 403.1), dissolved oxygen (SOP 400.1), pH (SOP 401.1), and conductivity (SOP 402.1) are taken from the replicate of each exposure containing the sediment samplers. In addition, these measurements are taken from one replicate of each exposure in which organisms are to be placed and in both replicates of an additional exposure. If all *in situ* measurements are within prescribed limits (Table 5.1), as verified by the QA officer, the organisms may be added to the test vessels.

5.2 Adding Organisms to Test Vessels

H. azteca neonates 14 - 21 d old are removed from the holding vessel using a glass pipet. Five neonates are placed in each of 14 30-mL beakers containing 10 mL dechlorinated tap water. The number of organisms in each beaker is verified by the QA officer. The organisms are then transferred by pipet to the appropriate test vessel and the time of day is recorded. This procedure is repeated twice until 10 organisms have been placed in each test vessel.

able 5.1. Experimental conditions of test.				
Temperature	$25 \pm 1^{\circ}C$			
Minimum Dissolved Oxygen	4.0 mg/L			
pH Range	6.5 - 8.5			
Light Quality	Ambient laboratory illumination			
Photoperiod	16 h light, 8 h dark			
Test Vessel	1000 mL glass beaker			
Replicates per Concentration	2			
Organisms per Replicate	10			
Duration of Test	48 h			
Endpoint	Death; no movement when gently disturbed			

5.3 Collection and Handling of IW, OW, and Sediment Samples.

Collection of aqueous samples will follow procedures recommended in EPA Method 425.1 for MBAS analysis and APHA 5310C for TOC and DOC. Treatment of glassware for collection of MBAS samples will be per routine cleaning procedures (SOP 800.1). Cleaning of glassware for storage of both aqueous and sediment samples for TOC and/or DOC analysis involves submerging an amber glass bottle overnight in 1:1 nitric acid. The bottles are then sealed with aluminum foil and placed in an oven at 400°C for at least one h. Flasks to be used in the collection of organic carbon samples are to be similarly prepared.

5.3.1. Collection and Handling of IW Samples

At the time the last organisms are added to the vessels, the stoppers are removed from the IW samplers. After the samplers have filled completely, the IW sample is removed using a pipet and bulb and placed in an appropriately cleaned (see above) 250 mL Erlenmeyer flask. After approximately 20 mL of IW is collected from each exposure, the flasks are swirled to thoroughly mix the contents. One 10 mL aliquot of IW sample is placed in a 25 mL test tube for MBAS analysis. The remaining IW sample is placed in an appropriately cleaned (See APHA 5310C) 25 mL test tube for TOC analysis.

5.3.2. Collection and Handling of OW Samples

After the IW samples are collected, the OW is removed by siphoning into a beaker. The

D:\SDA\SOP.3

11

OW is then swirled gently to thoroughly mix the contents. A 250 mL aliquot is then transferred to a clean (APHA 5310C) amber glass bottle. One half of this sample will be filtered through acid washed 0.45 μ membrane filters and preserved for analysis of DOC.

5.3.3 Collection and Handling of Sediment Samples

The test vessels containing sediment are covered with aluminum foil. The IW, OW, and sediment samples are then submitted to the analytical section for analysis. Approximately 25 g of sediment plus associated IW are placed in a polyethylene centrifuge tube and centrifuged at 3000 rpm for 1 h. The supernatant water is then removed with suction. The sediment samples are then submitted to the analytical section for analysis. An additional sample of sediment from the highest exposure of each test is in a clean amber glass jar for analysis of sediment TOC. This analysis will be performed by an outside laboratory.

6.0 TEST MAINTENANCE

Measurements of temperature, dissolved oxygen, pH, and conductivity are taken in one replicate of each exposure and in both replicates of the 4000 mg/Kg exposure at 24 h. Measurements which are outside specified limits are reported to the QA officer. In addition, the following additional observations are made: OW appearance (clear, turbid) and level of activity shown by organisms observed in the test vessels (swimming in OW, moving about sediment surface, not moving).

7.0 ENDING THE TEST

The test is ended 48 ± 2 h after the first organism was introduced. Final *in situ* measurements are taken. Organisms and OW are removed from the test vessels by siphon. All OW and the top 1 cm of sediment are removed from the test vessel and filtered through 0.25 mm mesh screen. All living and dead organisms are counted. An attempt is made to account for all organisms which were placed in the test vessel.

8.0 **REFERENCES**

Pittinger, C.A., V.C. Hand, J.A. Masters and L.F. Davidson. 1988. Interstitial water sampling in ecotoxicological testing: Partitioning of a cationic surfactant. In: W.J. Adams, G.A. Chapman and W.G. Landis, Eds, Aquatic Toxicology and Hazard Assessment: 10th Volume, ASTM STP 971, pp. 138-148

SOP 105.1: CULTURE PROCEDURE FOR HYALELLA AZTECA

OBJECTIVE:

To provide a healthy culture of *H. azteca* suitable for testing.

METHOD:

A. Handling Tools

- 1. 5mm glass tubing cut into 15 cm sections, fire polished on both ends
- 2. Small pipette bulb.
- 3. Wash bottle filled with culture water (DeCl-Dechlorinated tap water).

B. Substrate

- 1. 1mm mesh Nytex(TM) screen cut into 10 cm squares.
- 3. Use 2 squares per jar.

C. Culture Jars

- 1. 1 gallon (3.785L) glass jars.
- 2. Acid and acetone rinse new glassware before using.
- 3. Fill each culture jar with 1L of DeCl and make a mark on the side of the jar to avoid measuring 1L at each renewal.

D. Feeding

1. Feed each jar (60 organisms) 1X10⁷ cells *Selenastrum capricornutum* + 10 mL YCT three times per week.

E. Starting A Culture

- 1. Put 1L DeCl and 2 squares of 1mm mesh Nytex(TM) screen into jar.
- 2. Add 10ml YCT and $1X10^7$ cells Selenastrum capricornutum.
- 3. Place 60 H. azteca into each jar.

4. Aerate the culture jar <u>gently</u>. Aggressive aeration leads to increased evaporation and "floaters"-animals trapped in the surface tension of the water.

F. Harvesting Neonates

Neonates are harvested once a week from each culture jar. This provides a brood of neonates each week that are 0-7 days old. These neonates are then reared to provide test organisms in known age lots of 7-14 days old or 14-21 days old. This method can be modified to provide a smaller age span, for example, harvesting can be done twice a week which yields organisms in a 3 or 4 day window. Fewer young are harvested each time but the window is tighter.

- 1. Remove the 2 squares of 1mm mesh screen, shaking gently to dislodge all of the organisms, and place the squares into a rinse of DeCl, set aside.
- 2. Gently pour contents of mature culture through 1mm mesh sieve, this traps the adult *H. azteca* but allows the neonates to pass through, and into a collecting pan (a shallow enamel or stainless steal pan-the darker the color the better).
- 3. Rinse the sides of the jar with the wash bottle to free any organisms that may stick to the side of the jar.
- 4. Rinse out the culture jar with DI water.
- 5. Refill the jar to the mark with DeCl.
- 6. Replace the 2 squares of 1mm mesh Nytex(TM) screen.
- 7. Feed the culture (D. 1).
- 8. Return adults that were collected in 1mm mesh sieve to culture jar using the glass pipette. Discharge the *H. azteca* carefully <u>underwater</u>, to avoid capturing air under the carapace-resulting in floaters.
- 9. Count adult *H. azteca* to keep track of brood stock survival recording the total number alive and the number of mating pairs. Count the neonates to monitor reproduction. As reproduction drops, replace brood stock with new animals. Record all data in appropriate log.
- 10. Neonates will now be left in the counting pan. There are two options at this point.

(1) Use 0-7 day old neonates in testing.

D:\SDA\SOP.3

2.4

(2) Place collected neonates into culture jar (E. 1-2). Give neonates a brood number and record it in the Log Book. Rear these organisms to the 7-14 day old stage for testing. Feed this jar at the same rate as the culture stock jars.

A good source of new brood stock are animals that have been matured to 7-14 days old but are not used in testing. At 14 days these animals should be thinned to 50 per jar and allowed to mature for breeding purposes at this density. Mating pairs will become evident at about 18-21 days of age.

G. Log Book Maintenance

Each time the culture is handled, the log book must be filled out. The maintenance records help to troubleshoot culture deficiencies. The following are recorded in the H. *azteca* culture log.

- 1. Place the date on the next available line for the stock jar you are renewing (each stock jar has a separate page).
- 2. Record feeding by placing the YCT batch number and your initials under the heading "YCT", and your initials under the heading "Alga" for each time you feed them.
- 3. Record the amount of water renewed under the appropriate heading (ex. 100%).
- 4. Record the number of neonates produced at each renewal. All neonates collected at each renewal are placed into a single jar and given a brood number. This number is recorded in a separated section of the log book titled "Broods".
- 5. Record the number of surviving adults at each renewal.
- 6. Record the number of mating pairs at each renewal.

Figure C1. QA control chart for H. azteca acute reference tests in copper sulfate.

SOP 400.1: DISSOLVED OXYGEN METER CALIBRATION, USE, AND MAINTENANCE

Reference: MODEL 9070 Oxygen Meter Operating Instructions

Cole-Parmer Model 9070 Dissolved Oxygen Meter:

OBJECTIVE

To obtain accurate and repeatable measurements of dissolved oxygen (DO) in aqueous samples. Measurements are deemed acceptable if final calibration readings are within 10% of initial settings.

METHOD

A. CALIBRATION

- 1. Connect probe to meter.
- 2. Set "MODE" to "ZERO" and set display to 000 with "ZERO" control knob.
- 3. Set "MODE" to "%" and allow electrode to polarize. This will take about 10 minutes. To prevent waiting each time for the electrode to polarize each time the instrument is used, it should be stored with the electrode permanently connected. The instrument will keep the electrode polarized even when switched "OFF". If instrument has been so stored, ignore this step.
- 4. After polarization, set the display to 100 with the "SLOPE" control knob. The electrode should be in air saturated with water vapor for this adjustment. To achieve this, hold probe close to, but not touching (about 1 cm above), a clean sample of water.
- 5. The instrument can be calibrated with the electrode in dry air but a small error will occur (approx 2% of reading). This can often be ignored in practice.
- 6. The instrument is now ready for use in either % saturation or mg/L without further calibration. No calibration is required for Temp. measurements.

B. MEASUREMENT OF OXYGEN

1. mg/L: This Mode gives the amount of oxygen in the water directly in mg/L or ppm. In this mode, the electrode compensates for a change in solubility of oxygen in water with temperature.

D:\SDA\SOP.3

2. Select the Mode required and immerse the probe in the sample to be measured. The probe must be immersed at least 40mm. The probe should be lightly shaken so that errors can be avoided due to oxygen starvation of the membrane.

C. MEASUREMENT OF TEMPERATURE

1. Set Mode to ^oC, immerse the temperature sensor into the sample. Read the temperature directly in ^oC.

D. MAINTENANCE AND STORAGE

- 1. In order to prevent the membrane from drying, store the probe in distilled water.
- 2. If the instrument is to be stored for more than 24 hours, store the membrane itself in distilled water to prevent the electrode from drying out as the membrane is porous to water vapor as well as oxygen.
- 3. When the "BAT" symbol appears in the top left hand corner of the display, the battery needs replacing. Remove the battery cover plate on the rear of the instrument to gain access to the batteries. Use only battery types PP3, 6FR, or MN1604.

E. LOG BOOK

1. Every time the Oxygen Meter is used, the calibration must be recorded in the Log book marked D.O. Log Book. Record the Date, the Test Numbers of the tests checked, whether Initial and/or Final measurements were taken, the Meter number, the Slope/Zero displayed on the meter after checking the dissolved oxygen, and the initials of the Operators who took the measurements.

SOP 401.1: pH METER CALIBRATION USE AND MAINTENANCE

OBJECTIVE

To obtain accurate and repeatable measurements of pH in aqueous samples. Measurements are deemed acceptable if final calibration reading are within 10% of initial settings.

<u>METHOD</u>

Reference: Digisense pH Meter Operating Manual

Cole-Parmer Model No. 5994

A. Calibration

- 1. Use fresh pH buffer every time the meter is to be calibrated. Make sure depth of solution is sufficient to cover the end of the probe.
- 2. Rinse probe with distilled water and blot dry with soft, lint-free napkin or cloth.
- 3. Uncover electrode filling hole by rolling down plastic cover. Immerse pH probe in standard buffer solution, pH 7. Measuring the temperature of the buffer solution, set the temperature of the pH meter to that of the temperature of the solution using the TEMP °C control to adjust the temperature.
- 4. Using the standardize control, cause the display to indicate the pH of the standardized buffer, pH 7.
- 5. Remove probe from the buffer solution. Rinse probe with distilled water, and blot dry.
- 6. Place probe in second pH buffer solution pH 10, if the expected value is greater than 7, or use pH 4 buffer if the expected value less than 7. Adjust the slope control in the side of the meter with screw driver until display indicates the pH of the second buffer solution.
- 7. Remove probe from buffer solution, rinse with distilled water, and blot dry. The meter is now ready to measure the pH of samples.

B. Measurement of pH:

1. Place probe in solution, making sure the sample depth is sufficiently covering the end of the probe.

D:\SDA\SOP.3

1.1

- 2. Take temperature of solution. Adjust the TEMP ^oC control the pH meter to that of the solution.
- 3. Agitate probe and wait until the display indication to stabilize. Read pH of sample.
- 4. Remove probe from sample solution, rinse with distilled water and blot dry. Cover up electrode filling hole by rolling up plastic cover.

C. Routine Maintenance and Storage:

Storage of Electrode:

- 1. Short term storage: Immerse electrode tip in 2M KCl solution. Cover electrode filling hole with plastic cover.
- 2. Long term storage: Fill lower plastic cap with 2M KCl and replace it on the electrode tip. Replace electrode in shipping box. Cover electrode filling hole with plastic cover.

Routine Maintenance of pH Meter:

- 1. Long term storage of meter: For prolonged storage, it is suggested that the probe be disconnected, the batteries removed, and placed in a plastic bag and kept in a dry 0°C to 70°C environment.
- 2. Keep the instrument case clean and free of dust. Wipe clean with soft, lint-free cloth or napkin that has been dampened with a mild detergent and distilled water. Wipe dry.
- 3. Periodically inspect receptacle and controls for loosening. tighten with proper tools as necessary. If receptacles display corrosion, return the instrument for repair service.
- 4. Approximately every two months, or as needed, replace battery. (one nine volt alkaline battery).
- 5. As the instrument is designed with no other user serviceable components other than the battery, if malfunctioning or failure occurs, return instrument for repair. Make sure problem is isolated to instrument, checking battery, buffers and probes first.
- D. Maintenance of pH Log book:

1. Every time the pH meter is used, the calibration must be recorded in the Log Book marked "pH Log Book". Record the Date, the Sample or Test numbers that were checked, whether Initial and/or Final measurements were taken, the Meter number, the date the Buffer was changed, the display After reading and the Operator who took the measurements.

D:\SDA\SOP.3

ŝ

402.1 CONDUCTIVITY METER CALIBRATION AND MAINTENANCE

OBJECTIVE

To obtain an estimate specific conductivity in aqueous samples. Measurements are deemed acceptable if final calibration reading are within 10% of initial settings.

<u>METHOD</u>

Reference: Owners Manual: Cole-Parmer 1481-55 Meter

A. Calibration:

11

17

- 1. To calibrate the conductivity meter use a standard calibration solution. The conductivity solution (0.1 M KCl) has a conductivity value of 12.88 mS/cm at 25°C. Use enough solution that at least 1 cm of the probe will be covered, but not to much that the liquid will cover the holes.
- 2. Press On switch.
- 3. Press the COND/TEMP switch to make the ^oC symbol appear on the display.
- 4. Measure the temperature of the calibration solution and adjust the temperature knob until the same temperature appears on the display. For best accuracy, calibrate the instrument at a temperature within +/- 2°C of the measurement temperature.
- 5. Press the COND/TEMP switch to make the $^{\circ}$ +-C symbol disappear.
- 6. Select the range.
- 7. Stir the liquid and tap the electrode against the bottom of the tube so that all air bubbles come out of the electrode through the holes in the sleeve.
- 8. Adjust the calibration screw located on the left side of the meter, until the display reads the conductivity value of the solution.
- 9. When taking the measurements, it may be necessary to change the range, this can be done by just pressing a different range control button as needed.

B. Routine Maintenance and Storage:

1. When not in use, keep the probe dry, and do not expose to high temperatures.

- 2. After use, rinse the electrode with D.I. water. For a thorough cleaning, pull off sleeve and clean electrode with cloth or mild detergent. Do not use abrasives. Note: Before removing the sleeve, note location of holes, and do not replace sleeve in the reverse direction, as inaccurate readings will result.
- 3. If the battery light appears, replace the battery. Use one 9 volt alkaline battery.

C. Log Book:

- 1. Every time the conductivity meter is used, the conductivity meter log book must be likewise filled out.
- 2. Enter the Date, the Sample number that is being measured, the meter number, the calibration readings Before/After the measurements were taken. Also the initials of the operator must be entered.

403.1 TEMPERATURE METER USE AND MAINTENANCE

OBJECTIVE

*

To obtain an estimate temperature in aqueous samples.

METHOD

Reference: Owner's manual, Digi-Sense Model 8528-20

- 1. Turn on power.
- 2. Change from ^oF to ^oC with control button.
- 3. Change thermocouple control to match color of thermocouple cord.
- 4. Take readings.
- 5. Store dry, and do not expose to high temperatures.
- 6. Reading are compared to an NBS traceable mercury thermometer once every three months.

D:\SDA\SOP.3

1

SOP 800.1: WASHING OF GLASSWARE

OBJECTIVE

To provide clean glassware for use in toxicity tests and associated activities.

METHOD

÷

7

23 1.4 A. Wash Procedure

- 1) Scrub with detergent in hot tap water.
- 2) Rinse 3X with tap water.
- 3) Rinse 3X with technical grade acetone.
- 4) Rinse 1X with tap water.
- 5) Rinse 3X with 5% technical grade HCl.
- 6) Rinse 3X with Type II deionized water.

B. New glassware which will come in direct or indirect contact with organisms <u>must</u> be soaked for a minimum of 24 h in 10% HCl before use.

C. Plastic cups to be used in toxicity tests (eg C. dubia chronic tests) must be rinsed with Type II deionized water before use.

D. Graduated cylinders, volumetric flasks, and volumetric pipets are to be washed after use.